Sentis
The ML-Agents Toolkit allows you to use pre-trained neural network models inside your Unity games. This support is possible thanks to the Sentis (codenamed Sentis). Sentis uses compute shaders to run the neural network within Unity.
Supported devices
See the Sentis documentation for a list of the supported platforms.
Scripting Backends : Sentis is generally faster with IL2CPP than with Mono for Standalone builds. In the Editor, It is not possible to use Sentis with GPU device selected when Editor Graphics Emulation is set to OpenGL(ES) 3.0 or 2.0 emulation. Also there might be non-fatal build time errors when target platform includes Graphics API that does not support Unity Compute Shaders.
Using Sentis
When using a model, drag the model file into the Model field in the Inspector of the Agent. Select the Inference Device : CPU or GPU you want to use for Inference.
Note: For most of the models generated with the ML-Agents Toolkit, CPU will be faster than GPU. You should use the GPU only if you use the ResNet visual encoder or have a large number of agents with visual observations.
Unsupported use cases
Externally trained models
The ML-Agents Toolkit only supports the models created with our trainers. Model loading expects certain conventions for constants and tensor names. While it is possible to construct a model that follows these conventions, we don't provide any additional help for this. More details can be found in TensorNames.cs and SentisModelParamLoader.cs.
If you wish to run inference on an externally trained model, you should use Sentis directly, instead of trying to run it through ML-Agents.
Model inference outside of Unity
We do not provide support for inference anywhere outside of Unity. The .onnx
files produced by training use the open format ONNX; if you wish to convert a .onnx
file to another
format or run inference with them, refer to their documentation.